

Threshold Pivoting for Dense LU Factorization

Neil Lindquist, Mark Gates, Piotr Luszczek, Jack Dongarra

ScalAH Workshop, 2022

Pivoting in Dense LU

- Needed for accuracy
 - Partial row pivoting used in practice
- Can add significant overhead
 - 1. Adds extra synchronizations
 - 2. Requires moving data to exchange rows

Pivoting constraints

Partial Pivoting

$$|a_{ii}| \ge |a_{ji}| \quad i \le j \le n$$

Pivoting constraints

Partial Pivoting

$$|a_{ii}| \ge |a_{ji}|$$
 $i \le j \le n$

Threshold Pivoting

$$|a_{ii}| \ge \tau |a_{ji}| \quad i \le j \le n$$
$$0 \le \tau \le 1$$

- Growth factor is main term in backward error bound
 - Growth in factorization ⇒ cancellation error

- Growth factor is main term in backward error bound
 - Growth in factorization ⇒ cancellation error
- Worst case: exponential growth

$$\rho \le (1 + \tau^{-1})^{n-1}$$

- Growth factor is main term in backward error bound
 - Growth in factorization ⇒ cancellation error
- Worst case: exponential growth

$$\rho \le (1 + \tau^{-1})^{n-1}$$

Average case: ?

- Growth factor is main term in backward error bound
 - Growth in factorization ⇒ cancellation error
- Worst case: exponential growth

$$\rho \le (1 + \tau^{-1})^{n-1}$$

- Average case: ?
- Growth of threshold pivoting given growth of partial pivoting

Growth: partial vs threshold pivoting

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ -1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & 1 & 1 \\ -1 - \delta & -1 & \cdots & -1 & 1 \end{bmatrix}$$

$$0 < \delta < \min(\tau^{-1} - 1, 1)$$

Partial: $\rho \approx 2$

Threshold: $\rho \approx 2^{n-1}$

Growth: partial vs threshold pivoting

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & 1 \\ -1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & 1 & 1 \\ -1 - \delta & -1 & \cdots & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 & \cdots & -1 & 1 \\ -1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & 1 & 1 \\ 1 + \delta & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & \cdots & -1 & 1 \\ -1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & 1 & 1 \\ 1 + \delta & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$0 < \delta < \min(\tau^{-1} - 1, 1)$$

Partial: $\rho \approx 2$

Threshold: $\rho \approx 2^{n-1}$

$$0 < \delta < \min(\tau^{-1} - 1, 1)$$

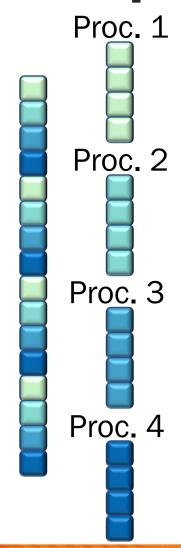
Partial: $\rho \approx 2^{n-1}$

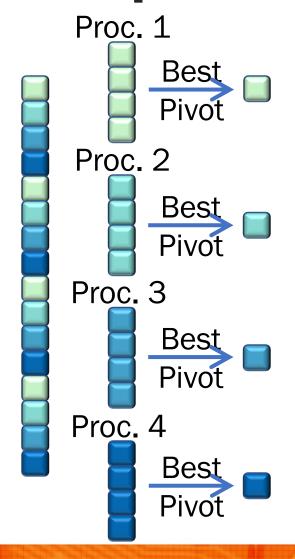
Threshold: $\rho \approx 2$

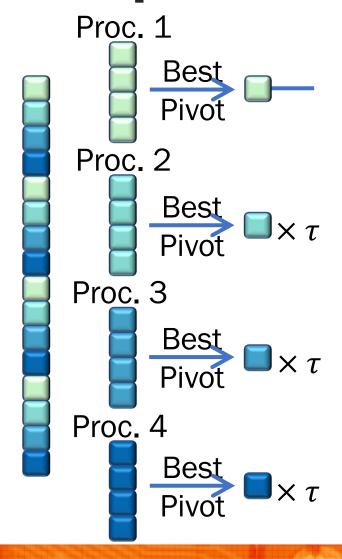
Distributed codes → low network bandwidth

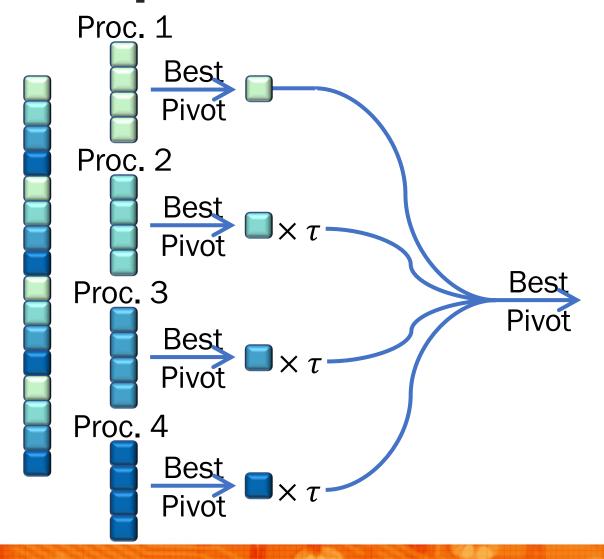
Distributed codes → low network bandwidth

- Assume: a_{ii} , a_{ji} on same process iff a_{ik} , a_{jk} on same process $\forall k$
 - E.g., 2d block-cyclic

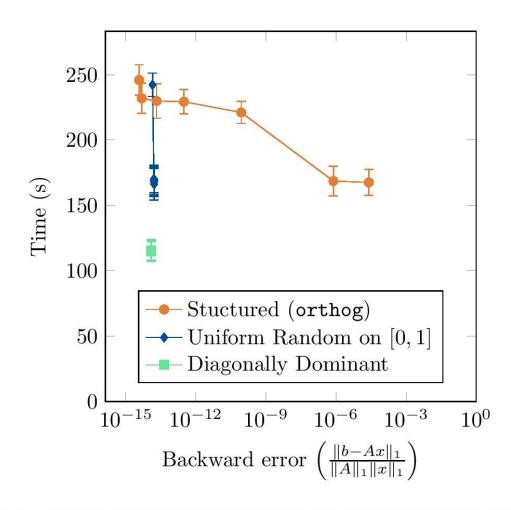








Effect on performance



- 8 nodes of Summit
- SLATE w/ target=device
- $n = 225\,000$; nrhs = 10
- Double precision

•
$$\tau \in \begin{cases} 1, 2^{-1}, 10^{-1}, 10^{-2}, \\ 10^{-4}, 10^{-8}, 0 \end{cases}$$

• 3 runs each; 95% CI

Avoiding inter- and intra-process comm.

- Do two reductions:
 - 1) Scale all but the diagonal element by au
 - 2) Scale remote elements by τ (as before)

Avoiding inter- and intra-process comm.

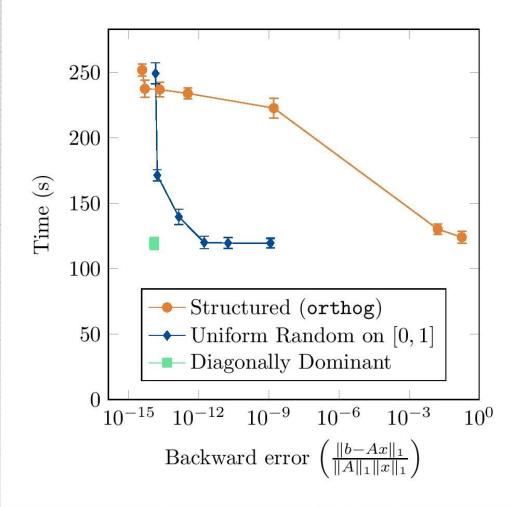
- Do two reductions:
 - 1) Scale all but the diagonal element by τ
 - 2) Scale remote elements by τ (as before)
- If (1) gives the diagonal element, use it.
- Else use result of (2).

Avoiding inter- and intra-process comm.

- Do two reductions:
 - 1) Scale all but the diagonal element by τ
 - 2) Scale remote elements by τ (as before)
- If (1) gives the diagonal element, use it.
- Else use result of (2).

- ⇒ Selected pivot
 - Within τ of maximum
 - Minimizes communication

Effect on performance

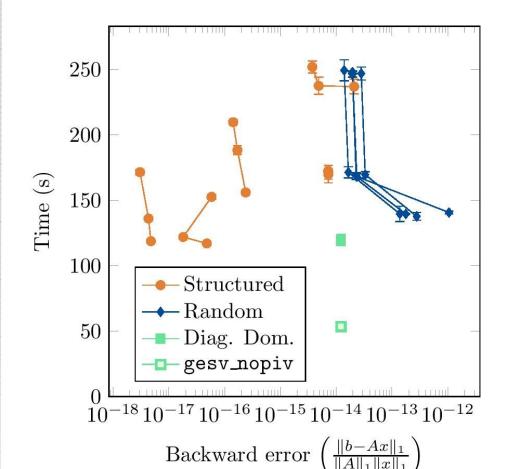


- 8 nodes of Summit
- SLATE w/ target=device
- $n = 225\,000$; nrhs = 10
- Double precision

•
$$\tau \in \left\{ 1, 2^{-1}, 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, 0 \right\}$$

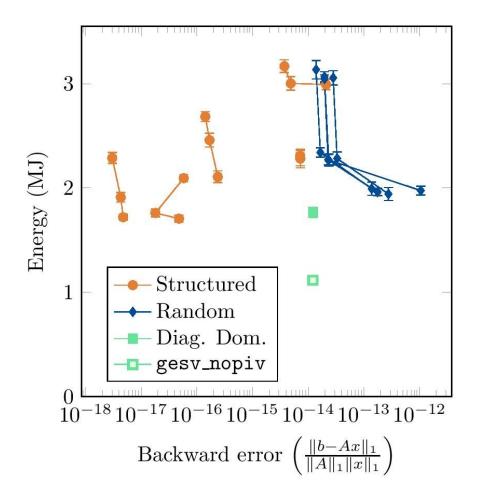
• 3 runs each; 95% CI

Effect on performance



- 8 nodes of Summit
- SLATE w/ target=device
- $n = 225\,000$; nrhs = 10
- Double precision
- $\tau \in \{1, 2^{-1}, 10^{-1}\}$
- 3 runs each; 95% CI

Effect on energy consumption



- 8 nodes of Summit
- SLATE w/ target=device
- $n = 225\,000$; nrhs = 10
- Double precision
- $\tau \in \{1, 2^{-1}, 10^{-1}\}$
- 3 runs each; 95% CI
- Energy measured w/ PAPI

Conclusions

- Threshold pivoting can reduce pivoting overhead
 - Without much loss of accuracy
- Minor addition to partial pivoting
 - Already added to SLATE's LU
- ⇒ Valuable addition to distributed, dense LU code

